Nuclear structure studies with the PRISMA/CLARA setup

•Italy

INFN LNL-Legnaro INFN and University Padova INFN and University Milano INFN and University Genova INFN and University Torino INFN and University Napoli INFN and University Firenze University of Camerino

•Spain

University of Salamanca

Romania

NIPNE Bucharest

•France

IReS Strasbourg GANIL Caen

•U.K.

University of Manchester Daresbury Laboratory University of Surrey University of Paisley

•Germany HMI Berlin

GSI Darmstadt

Gamma spectroscopy in grazing reactions

Thick-target experiments R. Broda and collaborators

- Use γ-γ cross-coincidence technique
- More than one partner/nucleus
- Only γ rays emitted after the nucleus stop can be resolved

Thin-target experiments PRISMA/CLARA approach

- Prompt γ-ray spectroscopy (CLARA) tagged with the identification of reaction products (PRISMA)
- Good quality Doppler correction required

The Magnetic Spectrometer PRISMA

The CLARA Array

25 Euroball Clover detectors from the EU GammaPool

Placed at backward angles respect to the optical axis of PRISMA

 2π coverage? Efficiency ~ 3 %Anti-Compton BGO shields ?Peak/Total ~ 45 %High granularity? FWHM ~ 0.8% at v/c ~ 10 %

PRISMA: trajectory reconstruction

- The simulations of the ion transport in PRISMA (A. Latina) shown that the fringing fields of the magnetic elements have small impact on the trajectories (big magnets)
- Adopted : simplified reconstruction algorithm, optimized for speed
 - Ideal magnetic elements
 - All trajectories treated in the horizontal plane after the quadrupole

- Only the magnetic fields ratio $\rm B_Q/B_D$ is needed

PRISMA: velocity, A/q, Doppler correction

The absolute Time-of-Flight offset is checked/determined by looking to the Doppler correction in CLARA spectra

PRISMA: Z, Charge states, A

PRISMA: efficiency and resolving power

82Se(500 MeV) + 238U

Projectile-like detected around 64°

Multi-nucleon transfer _____ Deep-inelastic collisions

v/c range : 4-10% Mass range : 50-110

N. Marginean Fusion06

Experimental production cross-sections

82Se(500 MeV) + 238U

Reliable production cross sections for exotic nuclei like the N=50 82 Ge or 80 Zn are very useful when one project γ -spectroscopy experiments

CLARA/PRISMA Campaign for the Experimental Study of Neutron-rich Nuclei

- Multi-nucleon transfer reactions with neutron-rich, stable projectiles on heavy targets
- Projectile-like reaction products are detected with PRISMA placed around the grazing angle
- ³⁶S+²⁰⁸Pb Medium spin spectroscopy of Ne, Mg, and Si neutron-rich isotopes *X.Liang, Paisley F.Azaiez, Orsay, Zs.Dombradi, Debrecen* ⁸²Se+²³⁸U Nuclear spectroscopy of neutron rich nuclei in the N=50 region *G.Duchene, Strasbourg, G.de Angelis, Legnaro* ⁶⁴Ni+²³⁸U Spectroscopy of deformed neutron rich A ~ 60 nuclei *S.M.Lenzi, Padova, S.J.Freeman, Manchester*

Spectroscopy of the lightest N=50 isotones

82Se(500 MeV) + 238U

- First observation of γ rays from the decay of ⁸¹Ga
- The excitation energy of the 4⁺ state in ⁸²Ge firmly established
- First observation of the yrast levels of ⁸³As

Spectroscopy of odd-A N=51 isotones

First identification of yrast states in ⁸⁵Se and ⁸⁷Kr

⁸²Se(500 MeV) + ²³⁸U

Evolution of collectivity in light N=52 nuclei

- First observation of the 4⁺? 2⁺ transition in ⁸⁶Se
- The systematic of R(4/2) ratio in N=52 even-even nuclei indicates an increase of collectivity going towards lower Z

Spectroscopy around N=32 shell closure

⁶⁴Ni(404 MeV) + ²³⁸U

First identification of yrast states in heavy odd-A Vanadium isotopes $^{55}\mathrm{V}$ and $^{57}\mathrm{V}$

•N=32 shell closure previously observed in ⁵²Ca and ⁵⁴Ti

•Possible N=34 shell closure theoretically predicted by the shell-model GXPF1 interaction, *M. Honma et al., Phys. Rev C 69,* 034335(2004)

Predicted shell closures at N=32 and N=34

- First experimental observation of the $1\pi f_{7/2}$ band in 55,57V
- The predicted shell closure at N=34 is not confirmed by experimental data

Onset of deformation towards N=40

- First identification of 4⁺ and possibly 6⁺ states in ⁶⁴Fe
- The onset of deformation towards N=40 is confirmed by experimental data
- Shell-model calculations predicts that the vg_{9/2} orbit has strong influence on the structure of even-even Fe isotopes with N=38
- The experimental R(4/2) ratio indicates a structure change for N=38

Spectroscopy of heavy Cr isotopes

⁶⁴Ni(404 MeV) + ²³⁸U

First observation of γ rays from the yrast levels of ⁵⁸Cr

g-softness in heavy Cr and Fe isotopes

- The R(4/2) ratio in Fe isotopes is very close to the value of 2.50 specific to γ-soft rotors
- The R(4/2) ratio in Cr isotopes is increasing towards the same value

The R(4/2) of ⁵⁸Cr has exactly the value predicted for E(5) critical point

⁵⁸Cr : A shape phase transition critical point ?

- The excitation energies for all states in the yrast band of ⁵⁸Cr are very close to the predictions of the E(5) symmetry
- Several large-scale Shell-Model results are also in good agreement with the E(5) solution

Experimental B(E2) values are needed to firmly demonstrate the existence of E(5) symmetry in ⁵⁸Cr

N. Marginean et al. Phys. Lett. B 633(2006)696

Collectivity above N=20 shell closure

g-softness in heavy S isotopes

Analytic IBA formulas

Realistic effective charge $q_{eff} = 0.2 \times Z$

The level scheme and B(E2) value suggest a significant degree of γ -softness in ⁴⁰S

Development projects:

Differential plunger with CLARA/PRISMA

Collaboration with IKP-Köln

- Consists in having an energy degrader at fixed distance after the target
- The gamma rays emitted before or after the recoil passes the degrader will have different Doppler shifts
- The lifetimes will be obtained from the intensity ratio before/after degrader

⁶⁰Fe – simulation based on existing experimental data

Development projects: Position-sensitive MCP array DANTE

Collaboration with FLNR Dubna

- Variable-position MCP array, allowing complete covering of the grazing angle
- Will compensate the low level of statistics of γ-PRISMA coincidences

gPRISMA : identification ggDANTE: build the level scheme

Talk of J.J. Valiente Dobon

AGATA Demonstrator at PRISMA

On the second half of 2007, the clover array CLARA will be replaced with the AGATA demonstrator

- 5 triple-clusters
- 36-fold segmented crystals
- 540 segments

Talk of E. Farnea

Higher intensity beams: PIAVE/ALPI

- Test beams of ²²Ne and ⁴⁰Ar were already successfully delivered
- Higher beam intensities and heavier projectiles will become available with the entrance of PIAVE/ALPI complex in routine operation

⁴⁰Ar test beam, January 2006

Summary

- Spectroscopy with quasi-elastic multinucleon transfer and deep-inelastic collisions, using the CLARA-PRISMA setup and the medium-mass and heavy beams from LNL, provides valuable structure information on moderately n-rich nuclei
- Further developments include
 - the possibility to measure lifetimes with CLARA/PRISMA setup
 - higher granularity and γ detection efficiency (AGATA demonstrator)
 - More statistics for γ-recoil coincidences (DANTE)
 - Higher intensities and heavier beams (PIAVE/ALPI)

