# Nuclear Spectroscopy Study of the Isotopes Populated via Multi – Nucleon Transfer in the <sup>90</sup>Zr + <sup>208</sup>Pb Reaction

#### Călin A. Ur

INFN - Padova

for the PRISMA - CLARA Collaboration



FUSION '06 - Venezia

### Transfer Reactions with Heavy Ions

| light ion reactions                                                         | heavy ion reactions                                                                                   |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| probe single particle properties<br>(spectroscopic factors, shell<br>model) | multiple transfers of nucleons<br>(possibility to compare observables<br>for multiple nn/pp/np pairs) |
| highly selective in energy and angular momentum transfer                    | population of high angular momentum<br>and high excitation energy states                              |
| sensitive test for nucleon<br>correlations (pairing, clusters)              | evaporation effects, DIC, collective excitation                                                       |
|                                                                             |                                                                                                       |



#### PRISMA - CLARA Setup

#### PRISMA



- Angular acceptances Solid angle Distance target - FPD Energy acceptance Resolving power Mass resolution Energy resolution Z resolution Count rate capability
- $\Delta \theta \approx \pm 6^{\circ} \Delta \phi \approx \pm 11^{\circ}$   $\approx 80 \text{ msr}$ 7 m  $\pm 20\%$ p/ $\Delta p \approx 2000$ 1/200 (measured) 1/1000 (via ToF)  $\leq 1/60$  (measured) up to 2x10<sup>5</sup> sec<sup>-1</sup>

#### CLARA



24 to 25 Clovers setup Efficiency ~ 3 % @ 1.3 MeV Peak/Total ~ 45 % Position  $\theta$  = 103°-180° FWHM ~ 10 keV for E<sub>y</sub>= 1.3 MeV @ v/c = 10%

# The PRISMA Spectrometer



# The Experiment

90Zr + 208Pb  $E_{LAB}$  = 560 MeV (TANDEM+ALPI) target ~ 300 µg/cm<sup>2</sup> PRISMA at  $\theta_{LAB}$  = 61.25°



X-MCP



# Ion Trajectory Reconstruction

A "raw" physical event is composed by a few parameters:position at the entrancex,  $y \rightarrow (\theta, \phi)$ position at the focal planeX, Ytime of flightToFenergy and energy loss $\Delta E, E$ coincident  $\gamma$ -rays $E\gamma$ 

Result  $\rightarrow$  A, q, E, Z for the analyzed ions  $\rightarrow$  Doppler-corrected  $\gamma$ -ray spectra





#### Multinucleon Transfer



# TKEL in Zr isotopes



#### TKEL in <sup>90</sup>Zr - Comparizon with GRAZING



### TKEL - Excitation Energy Selection Tool



# Multinucleon Transfer - High Spin States Population



#### Pairing Vibrational States in Zr Isotopes



### Pairing Vibrational States in <sup>90</sup>Zr





P.E.Garrett et al., PRC68,024312(2003)

We have studied multinucleon transfer reactions in the  $^{90}$ Zr +  $^{208}$ Pb collision at an energy near the Coulomb barrier

Target – like products were detected with the high efficiency and high resolution spectrometer PRISMA that allowed for a complete set of experimental observables : Z,A yields, differential and total cross sections, Q-values, excited states population

Gamma – rays were detected with the CLARA array and Doppler – corrected according to the kinematical reconstruction of the events

GRAZING calculations account well for the experimental results situation in the chain of nuclei populated through pure neutron transfer (Zr isotopes)

Interesting studies on pair transfer degrees of freedom can be performed with the PRISMA spectrometer coupled to the CLARA gamma array