Spectroscopy of n-rich nuclei with CLARA-PRISMA

A.Gadea INFN-LNL (for the CLARA - PRISMA collaboration)

- Description of the setup
- •Grazing reactions as mechanism to study the structure of moderately neutron-rich nuclei
- •Results on n-rich medium mass (A~80 and A~60) nuclei

INFN

•Perspectives with CLARA-PRISMA and the AGATA Demonstrator-PRISMA setup

PRISMA: Large acceptance tracking Magnetic Spectrometer Q-D Designed for the HI-beams from XTU-ALPI

$$\begin{split} \Omega &= 80 \text{ msr} \\ \Delta \text{Z/Z} &\approx 1/60 \text{ (Measured) IC} \\ \Delta \text{A/A} &\approx 1/190 \text{ (Measured) TOF} \\ \text{Energy acceptance } \pm 20\% \\ \text{B}\rho &= 1.2 \text{ T.m} \end{split}$$

Note: Dispersion 4cm / 1%, focal plane 1m

Entrance detector position (MCP) TOF Entrance detector- MWPPAC (~5m) Focal Plane position MWPPAC + IC Total Energy and Z (DE/E) from IC

S.Beghini et al. Nucl. Instr. Methods Phys. Res. A551, 364 (2005)

G.Montagnoli et al. Nucl. Instr. Methods Phys. Res. A547, 455 (2005)

CLARA: Clover Detector array

25 Euroball Clover detectors (EB GammaPool) Performance at Eγ= 1.3MeV Efficiency ~ 3 % Peak/Total ~ 45 % FWHM < 10 keV (at v/c = 10 %)

Grazing reactions transferring several nucleons as a tool to study n-rich nuclei

Deep-inelastic reactions used since thick target pioneering work of R.Broda et al. (Phys. Lett. B 251 (1990) 245)

Use of Multinucleon-transfer triggered by the work of L. Corradi et al. at LNL

L.Corradi et al., Phys.Rev.C59 (99)261, Theory: G.Pollarolo

Estimated cross sections for N=50 n-rich nuclei

82Se(500 MeV) + 238U

PISOLO: LNL electrostatic spectrometer used for binary reaction cross section measurements

⁸²Se + ²³⁸U E=505 MeV (ALPI) PRISMA at θ_{G} =64°

G.deAngelis, G.Duchêne Analysis: N.Marginean

Spectroscopy of the N=50 Isotones

S.M. for the N=50 isotones

Systematic variation of proton effective single-particle energies from N=40 to N=50 due to the evolution of the monopole interaction.

A.F. Lisetskiy et al., PRC 70, (2004) 044314 X. Ji and B.H. Wildenthal PRC 37 (1988) 1256 Y.H. Zhang et al., PRC 70 (2004)24301

Inversion of the effective single particle orbitals $f_{5/2}$ and $p_{3/2}$.

T. Otsuka et al. PRL95, 232502 (2005)

Even-even N=50 isotones

Interaction from A.F. Lisetskiy, B.A.Brown, M. Horoy, H. Grawe PRC 70 (2004) 44314, EPJA 25 s01 (2005) 95 (G-Matrix based on Bonn-C)

Odd-Z N=50 isotones

Interaction from A.F. Lisetskiy, B.A.Brown, M. Horoy, H. Grawe PRC 70 (2004) 44314, EPJA 25 s01 (2005) 95 (G-Matrix based on Bonn-C)

Conclusions on N=50

No evidence of shell gap change down to 81Ga (Z=31)

Information can be derived from high spin states in ⁸²Ge and ⁸¹Ga.

X. Ji and B.H. Wildenthal PRC 37 (1988) 1256 Y.H. Zhang et al., PRC 70 (2004)24301

Spectroscopy of the N=51 Isotones

N=51 is the ideal region to study the evolution of the neutron g7/2 monopole due to the π f5/2 \leftrightarrow vg7/2 tensor interaction

The N=51 isotones

Downward shift of the $\upsilon g_{7/2}$ in proton rich N=51 isotones as $\pi g_{9/2}$ is filled

Calculations in progress by T.Otsuka.

A~60: Neutron-rich Fe isotopes

00	Ni59	Ni60	Ni61	Ni62	Ni63	Ni64	Ni65	Ni66	Ni67	Ni68	Ni69
78	7.6E+4 y 3/2-	0+	3/2-	0+	100.1 y 1/2-	0+	2.51/2 h 5/2-	54.6 n 0+	21 s (1/2-)	19 s 0+	11.4 s
		26.223	1.140	3.634		0.926					
	Co58	Co59	Co60	Co61	Co62	C003	Co64	Co65	Co66	Co67	Co68
	70.82 d	7/2-	5.2714 y 5+	1.650 h 7/2-	1.50 m 2+	27.4 s (7/2)-	0.30 s 1+	1.20 s	0.23 s	0.42 s	18 s
		100				()		((0.)	()	
	Fe57	Fe58	Fe59	Fe60	Fe61	Fe62	Fe63	Fe64	Fe65	Fe66	Fe67
	1/2	0.	44.503 d	1.5E+6 y	5.98 m	68 s	6.1 s	2.0 s	0.4 s		
	1/2-	0+	3/2-	0+	3/2-,5/2-	U+	(5/2)-	0+		04	
	2.2 Mp 56	0.28 Mp57	Mp58	Mp50	Mp60	Mp61	Mp62	Mp62	Mp64	Mp65	Mp66
	2.5785 h	85.4 s	3.0 s	4.6 s	51 s	0.71 s	0.88 s	0.25 s	104	WIII05	WIIIOO
	3+	5/2-	0+	3/2-,5/2-	0+	(5/2-)	(3+)				
	0.55	0.50	0.55	0.55	0.50	0.00	0.01	0.00	0.00	0.01	0.05
	Cr55 3.497 m	5.94 m	21.1 s	7.0 s	0.74 s	0.57 s	Cr61	Cr62	Cr63	Cr64	C165
	3/2-	0+	3/2-,5/2-,7/2	- 0+		0+		0+		0+	
	V54	V55	V56	V57	V58	V59	V60	V61	V62	V63	
	3+	(7/2-)									
	Ti53	Ti54	Ti55	Ti56	Ti57	Ti58	Ti59	Ti60	Ti61		
	32.7 s (3/2)-	0+		0+		0+		0+		Δ	
										TV	
	Sc52	Sc53	Sc54	Sc55	Sc56	Sc57	Sc58	Sc59			
	8.2 s										
	31										
8	Ca51	Ca52	Ca53	Ca54	Ca55	Ca56	Ca57				
20	10.0 s	4.6 s	90 ms	ouot	Guod	Guod	Guor	20			
201	(3/2-)	0+	(3/2-,5/2-)	0+		0+		SO			
		20		24		20					
		3 Z		54		30			C	\ I	

⁶⁴Ni (400 MeV)+ ²³⁸U

CLARA-PRISMA $\theta_{G} = 64^{\circ}$

Doubly magic character suggested R.Broda et al., PRL 74 (1995) 868

Yrast states: evolution of the collectivity towards N=40 in the Fe (Z=26) isotopes

S.Lunardi, S.M.Lenzi, S.Freeman

Mass distribution

Neutron-rich even Fe nuclei

2⁺ in ⁶⁴Fe and ⁶⁶Fe known from Mn β-decay measurements at ISOLDE (M.Hannawald et al., PRL 82 (1999) 1391)

 (5^{-})

New region of deformation

In nuclei where the 1f_{7/2} proton shell is not filled, the neutrons excited to the sdg-shell couple to the pf-proton and deformation appears. The removal of 2 protons from ⁶⁸Ni drives ⁶⁶Fe into prolate shapes generating a new region of deformation.

M. Hannawald et al., PRL82, 1391 (1999) E. Caurier et al., Eur. Phys. J A 15, 145 (2002)

Differential RDDS Measurements with CLARA-PRISMA

A, Dewald, N. Marginean, A. Gadea

Differential Plunger for angles ≠ 0°

PRISMA mass (A) resolution after degrader

102° ring (1/2 efficiency) not usable for lifetime measurements

Test Experiment performed in June 2006

Beam: ⁶⁴Ni at 400MeV Target: ⁹³Nb 1mg/cm² + ²⁰⁸Pb 1mg/cm² Degrader: ²⁴Mg 2mg/cm² Debugging of the setup + 2 days of measurement at 150µm and 50µm performed with limited beam intensity

Preliminary Results for 150µm Target-Degrader Distance

Test case ⁶⁰Fe

(2⁺ at 824 keV) $T_{1/2}$ = 8.2(15) ps (agreement with known 8.0(15) ps) B(E2)=0.018 e²b² (13 W.u.)

sign of "longer" lifetime in ⁶²Fe

(2+ at 877 keV)

T_{1/2}~9.5(20) ps B(E2)~0.012 e²b² (8 W.u.)

CLARA-PRISMA 2006-2007

Drawback of the setup: low efficiency for $\gamma - \gamma - PRISMA$ coincidences: Development of complementary ancillary devices for Doppler correction.

Measurement of γ -PRISMA coincidences (Identification) and γ - γ -ancillary coincidences (γ - γ coincidences with Doppler correction).

DANTE: MCP array, developed in collaboration with FLNR Dubna, in phase of data evaluation of firsts runs.

Development of the Differential Plunger RDDS technique for CLARA-PRISMA in collaboration with IKP-Koeln.

Development of a new focal-Plane detector for PRISMA based on SeD (collaboration U.K. - INFN)

Heavier beams from ALPI linac with the new positive ion injector PIAVE.

DANTE

INFN-LNL, INFN-Milano, FLNR-Dubna, INFN-Padova,

The DANTE detectors

Based on FLNR–Dubna Corset design

Thickness:13mm

Lateral section of a DANTE detector

In-Beam Commissioning at LNL Legnaro

Time resolution 130ps Position resolution <1mm High counting rate High noise rejection

Development of a new FPD for PRISMA

Positive ion injector ECRIS + PIAVE commissioned Last quarter 2005 - first quarter 2006: Ne, Ar and Kr beam delivered to the experimental areas for test. PIAVE beams for users during second semester 2006.

⁴⁰Ar (238 MeV) PIAVE-ALPI beam test CLARA-PRISMA, January 2006

AGATA Demonstrator – PRISMA setup

AGATA Demonstrator at PRISMA

Efficiency at 1MeV: ~6% at 14cm Peak/Total: ~50% Angles covered: from ~135° to 180° FWHM, β~10%, 1MeV: <4 keV

The full demonstrator at 14cm (6% efficiency) can be used for RDDS lifetime measurements

Conclusions:

-Spectroscopy with grazing reactions, using the combination of a gamma- array and a large acceptance spectrometer (as CLARA-PRISMA), provides valuable structure information on moderately n-rich nuclei. -Differential RDDS technique been developed in collaboration with IKP-Koeln,

-CLARA has been upgraded with an ancillary array to perform "in beam" γ – γ coincidences with Doppler correction. -New SeD based FPD for PRISMA are under development (U.K. – INFN) -Runs using the CLARA-PRISMA setup with the medium-mass and heavy beams from PIAVE-ALPI during the second semester 2006.

The CLARA-PRISMA collaboration

•France

IReS Strasbourg GANIL Caen

•U.K.

University of Manchester Daresbury Laboratory

University of Surrey University of Paisley

Germany

HMI Berlin

GSI Darmstadt

Italy

INFN LNL-Legnaro INFN and University Padova INFN and University Milano INFN and University Genova INFN and University Torino INFN and University Napoli INFN and University Firenze University of Camerino

•Spain

University of Salamanca

•Romania Horia Hulubei NIPNE Bucharest

Angular Distribution of $4^+ \rightarrow 2^+$ and $2^+ \rightarrow 0^+$ transitions indicates: $\sigma/J \sim 0.3$

S.Szilner, LNL & Zagreb

⁹⁰Zr 560MeV + ²⁰⁸Pb 1 day beam time L.Corradi, C.A.Ur, et al.

Distance along focal plane

Nb89	Nb90	Nb 91	Nb92	Nb93	Nb94	Nb 95
(9°2 1)	1400h	907 924	3.409477 (7)+	9/24	(0)+	34546-4 972+
HC	BC .	anc i	HC, þ	100	ß	Þ
I _188	<u>In89</u>	Zr90	Zr 91	Τ α 92	<u>In93</u>	Zr94
0+	/84.h 9/3+	0+	a ar	► 0+	153040 y 5/2+	0+
ac i	æc	9.45	11.72	1715	β	17.E
Y 87	¥88	¥ 39	¥90	<u>Y91</u>	¥92	¥93
798h 1/2	4	1 ⁷ 2-	0410h 2-	5854.4 1/2	354h 2	1018h 1/2
HC:	BC .	10	ß		ß	ß
S 18 6	Sr 87	ST 88	Sr89	ST90	Sr91	Sr92
0+	9/21-	0 1	90534 524	22.23,7 0+	9:00h - 5:24	2.71.h 0+
095	700		6	0	6	ø
Rb85	Rb86	Rb 87	Rb88	Rb89	Rb90	Rb 91
52	120014	4792107 372-	17.78m 2-	1515m 372	192.	95.4: 373-)
72165	BC,β-	β- 2000	β	β	β	β

Transfer with Radioactive Beams at Coulomb barrier Energies 80 Zn + 238 U (460 MeV)Calculations by

Pure neutron, proton transfer channels

Simultaneous transfer:

Is achieved by adding a PAIR-MODE $(\delta n_{fi} = \pm 2, \delta z_{fi} = \pm 2)$

$$F_{fi}^{pair}(r) = \beta_p \frac{\partial V^{opt}(r)}{\partial A}$$

where the strength β_p is adjusted to the experiment.

DANTE

(Detector Array for multi Nucleon Transfer Ejectiles)

INFN-LNL, INFN-Milano, FLNR-Dubna, INFN-Padova,

•Start detector of PRISMA \Rightarrow No possible to place PPACs

•DANTE (heavy ion detector based on MCP) reveals the position interaction of the recoils \Rightarrow Doppler correction.

•DANTE placed at the grazing angle, has a high efficiency $\Rightarrow \gamma \cdot \gamma$ coincidences \Rightarrow No need of extra experiments to build up a level scheme.

