NUCLEAR Structure at the limits: exploring the structure of nuclei with modern gamma ray detectors

2 MeV VdG

Exp Halls

7 MV VdG

seaside

Giacomo de Angelis,

Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro

Erice, September 17 2006

SC PLAVE

Studies of exotic nuclei

 All the aspects of nuclear interactions in the nuclear structure are amplified at the driplines. A. BONACCOTSO

New structure and new phenomena

- Neutron halos,
- Neutron skins
- Covalent bond molecular states
- Soft mode of collective motion
- Change of magic numbers
- New development of nuclear models
 - Green function montecarlo
 - Anti-symmetrised molecular dynamics
 - No-core shell model
 - Cluster montecarlo
 - Relativistic mean field

Reduction of spin-orbit potential

The Properties of Nuclei with Extreme N/Z-Ratios

Single-particle (or shell) structure is the basis of many nuclear properties such as (sub)magic number, deformation, and even the existence of the nucleus.

Weakening of the spin-orbit force due to the diffuse nuclear surface?

DDRH Field Calculations by F.Hofmann, C.M.Keil, H.Lenske, Phys.Rev.C64(01)034314.

It affects the element formation in r-process: Quenching of shell-structure? Pfeiffer et al., Z. Phys. A357 (1997) 235

Disappearance of Shell Structure?

The Properties of Nuclei with Extreme N/Z-Ratios

 Basic nuclear properties of rare isotopes (e.g., masses, half-lives, ...) determine element formation in the cosmos

Element formation in r-process: quenching of shell-structure? Pfeiffer et al., Z. Phys. A357 (1997) 235

Disappearance of Shell Structure?

"Single particle" orbitals are dressed even in semi-magic nuclei

The single-particle levels in exotic nuclei can be affected by Loose binding Woods-Saxon potential Neutron skin Mean-Field models

Nucleon-Nucleon interaction, particularly, spin-isospin interactions such as tensor and 2-body *LS* interactions

(also in nuclei not very close to drip lines)

Shell Evolution (change of single-particle levels)

T. Otsuka et al. Phys. Rev. Lett. 87, 082502 (2001)

Systematic variation of proton effective single-particle energies due to the tensor interaction ($\pi + \rho$ meson)

T. Otsuka et al. PRL 95, 232502 (2005)

Deep inelastic reactions - a tool for nuclear spectroscopy

Optical elements

• Quadrupole: a singlet, focuses vertically the ions towards the dispersion plane

• **Dipole:** bends horizontally the ions with respect to their magnetic rigidity (Br)

PRISMA detectors

PRISMA: Large acceptance tracking Magnetic Spectrometer Q-D

$$\begin{split} \Omega &= 80 \text{ msr} \\ \Delta Z/Z &\approx 1/60 \text{ (Measured)} \\ \Delta A/A &\approx 1/190 \text{ (Measured) TOF} \\ \text{Energy acceptance } \pm 20\% \\ \text{B}\rho &= 1.2 \text{ T.m} \end{split}$$

γ-spectroscopy of neutron rich nuclei Mass distribution of 505 MeV ⁸²Se + ²³⁸U

Zr84	Tr85	Tr86	Z187	Ir 88	Zr89	Zr90	Zr91	Zr92
0+	7/24	0+	(972)+	0+	9724	0+	5/2+	0+
E	BC .	BC .	BC	BC	HC T	9.45	11.22	1715
¥83	Y84	¥85	¥86	¥87 7985	Y88 105654	Y89	¥90 6410b	¥91
(9/28)	1+ *	arz	4	1/2 .	4	1/2	2 .	1/2.
EC Ö	acc "	BC Ö	BC Ö	BC Ö	æc Ö	100	6	
ST82	Sr83	Sr84	ST85	Sr86	Sr87	ST88	Sr89	Sr90
0+	7/2+	0+	S12+ *	0+	972+ *	0+	5/2+	0+
E	BCC	0 <i>9</i> 6	HC DH	985	7.00	82.98	β	β
Rb81	Rb82	Rb83	Rb 84	Rb85	Rb86 1863 4	Rb87	Rb88	Rb 89 15.15m
30	1+ *	52	2. *	52	2 .	3/2	2	32-
E	BC	EC .	всβ	72165	нс,⊳	37614	₽	Þ
KT 80	22845r	14782	15733	KT84	Kr85	Kr86	Kr87 263 m	Kr88 234b
0+	7/2+	0+	972+ *	0+	9124	0+	5/2+	0+
235	EC	11.5	115	57.0	Þ	173	Þ	Þ
B-79	17/Bm	B781	Br82	2.40h	Br84	290m	Br86	Br87 95:00
3/2 *	1+ *	32-	s. ,	32	2	3/2	(3)	32-
90.09	#0C,β	431	P		2	P	P	βn
S e78	Se79 113057	Se80	Se81 1845m	Se82	Se83 22.5m	S 684	Se85 31.7r	Se80 1531
0+	7/2+ *	0+	1/2- *	0+	9121-	0+	(5/2+)	0+
23.78	P	40	Þ	PP	N	P	P	Þ
AST SEED	A578 90.7m	As 79 901 m	As80 15.2.	As81 33.34	A:82	13.4	As84 4.02r	A585 2.021 c
312	3	32-	1+	32	124	(52,32)		(32-)
β · · · · · ·	A	β	P -	4		ß	βn	βn
Ge70	Ge77 11.30h	Ge78 SEDm	Ge79 1898 :	Geol	Ge81 7.6:	Ge82 400:	Get3 1.55t	Ge84 900mz
0+	7/2+ *	0+	(1/2)- *	0+	(9'2+)	0+	(5/28)	0+
7,44	P	P	P	P	₽	β	P	βn
Ga75 125:	Ga76 326:	Ga77	Ga78 509:	G479 2847	G:20 1.657:	Ga81 1.2.7:	Ga82	Ga83 0.51 :
3/2	(24,34)	(372-)	(39)	(32)	යා	(5'2)	(123	
β	P	P	P	βn To Re	βn T TO	βn	βn Tr. m	βn To DO
61174 966	10.2	5.7	208:	1.47:	AB79 S95me	0545:	0.2%	TURST
-	(7/28)	0+	(772+) *	0+	(9*2+)	0+	a service and a	0+
P Culta	Contract of	P	0.56	₽ Cuen	βn Control	Pn Control	Pn Cw00	
39:	1994:	1.224	0.64 c	459ms	342me	122 ms	C.080	50
	Q4,3H		. *		80	8.5		32
8	3552	Da Nord	Bn Actor	Bn Marie	D MEET	Bn Action	4 1.47	
21:	0.50	111	THEFT	141.70	10.07	141.76		
0+	A	0+		0+		0+		
4	2	15					2	
11		16		10		50	8	
44		40		40		50	85	

Systematic variation of proton effective single-particle energies due to the tensor interaction

T. Otsuka et al. PRL95, 232502 (2005)

proton neutron

The N=51 isotones

Monopole shift of the single particle levels

Downward shift of the $\upsilon g_{7/2}$ in proton rich N=51 isotones as $\pi g_{9/2}$ is filled

The N=51 isotones

Monopole shift of the single particle levels

Downward shift of the $\upsilon g_{7/2}$ in proton rich N=51 isotones as $\pi g_{9/2}$ is filled

Differential RDDS with CLARA-PRISMA

800

⁶⁴Ni at 400MeV on ²⁰⁸Pb 1mg/cm² Degrader: ²⁴Mg 2mg/cm² 150,50μm

Average v/c after reaction 8.8% and after degrader 7.1%

> Product Energies ~4MeV.A

Results for 150µm Target-Degrader Distance

known value 8.0(15) ps

B(E2)=0.018 e²b² (13 W.u.)

sign of "longer" lifetime in ⁶²Fe

B(E2)~0.012 e²b² (8 W.u.)

Grazing reactions

N-rich heavy projectiles allow to use transfer reactions as a ΔN - ΔZ filter for driving the multi-nucleon transfer flux to exotic regions

Neutron rich RIBs: a tool for very neutron rich nuclei

Coupled channel calculations (Grazing). G. Pollarolo

Future perspective: beams of heavy ions or neutron-rich radioactive beams

Very neutron deficient nuclei: proton-neutron Superfluidity in N=Z Nuclei

<u>A new superfluid phase of nuclear matter</u> <u>based on p-n pairing is expected at N=Z</u>

Energy Differences in Isobaric Multiplets

;_= ± 1/2 Mirror Nuclei

Exchange Neutrons for protons

Study the energy displacement of excited states (*MED*)

$$MED = \left(E_x^J\right)_{T_z = -1/2} - \left(E_x^J\right)_{T_z = 1/2}$$

- > Nucleon alignment at the backbending
- > Evolution of the radii along a rot. band

st S=0

S=0

 (\mathbf{b})

n

(a)

- Isospin non-conserving terms
- Further Coulomb effects
- Configuration of states
- Isospin mixing
- > Coupling to GR
- > Induced IS terms
- Coupling to the continuum

Ener Eryeldigf eld efficiences in the sort of the trade o

T=1 Isobaric Triplets Mn 25 50 26 26 **T=0** T = 1Study the energy displacement of excited states (TED) 54 NI 27 52(Co 54**C**C $\operatorname{TED}_{J}^{(exp)} = E_{J}(T_{z} = 1) + E_{J}(T_{z} = -1) - 2E_{J}(T_{z} = 0)$ ⁵⁴Fe 26⁵⁰Fe ⁵¹Fe ⁵⁷fe 25> Nucleon alignment at the backbending ⁵⁰Mn ⁵¹Mn 48Mn 52Mn 53Mn > Evolution of the radii along a rot. band 50**Cr** 24 ⁴⁶Cr 47Cr 49 C.r. 51(r 52(r Isospin non-conserving terms 23 46 49{} 44{} 48{} 50{} 51{} > Further Coulomb effects ⁴⁶Ti 47Ti 48Ti 49Ti 50Ti Configuration of states 22 43**Ti** 49 Ti > Isospin mixing 21 <mark>⁴¹Sc ⁴²Sc ⁴³Sc</mark> ⁴⁴Sc ⁴⁵Sc ⁴⁶Sc ⁴⁷Sc ⁴⁸Sc ⁴⁹Sc > Coupling to GR <mark>41Ca</mark> 42Ca</mark> 43Ca 44Ca 45Ca 46Ca 47Ca 48Ca 20 Induced IS terms 20 21 22 23 24 25 26 27 $28 \rightarrow N$ > Coupling to the continuum Neutron N=Z Line number

Energy Differences in Isobaric Multiplets

Differences \rightarrow Coulomb effects Multipole effects dominate:

- Angular-momentum coupling of pairs of protons
- Changes in alignment \rightarrow changes in spatial correlation
- 100 keV "alignment" effect typical

P.E.Garrett et al. Phys Rev Lett **87**(2001)132502 **S.M.Lenzi et al.** Phys. Rev. Lett. **87**(2001)122501 **C.D.O'Leary et al.** Phys. Lett. B 525(2002)49

Isospin Mixing in Mirror Pairs

In the validity of ¹⁾ *Charge invariance* of the *nuclear interaction* isospin symmetry ²) *Long-wavelength approximation*

B(E1) strengths are identical in T=1/2 mirror pairs

Isospin mixing via the IVGMR provides an induced isoscalar component

In mirror $\Delta T=0$ transitions

- Isovector terms have opposite sign
- Isoscalar terms have equal sign

 $B(E1) = B^{IS}(E1) - B^{IV}(E1)$ $B(E1) = B^{IS}(E1) + B^{IV}(E1)$

J. Ekman et al. PRL 92, 132502 (2004)

Further Coulomb effects: the e.m. spin-orbit

The electromagnetic spin-orbit coupling results from the Larmor precession of the nucleons in the nuclear electric field due to their intrinsic magnetic moments and to the Thomas precession experienced by a proton because of its charge.

It is important when a nucleon is promoted from a j=l-s level to a j=l+s level. The effect on a proton is opposite to the effect on a neutron orbit It is proportional to the difference of proton and neutron occupation numbers.

Electromagnetic spin orbit term

J. Ekman et al. PRL 92, 132502 (2004)

Single-particle shifts: Electromagnetic S-O effect

Electromagnetic spin-orbit effect is configuration dependent.

$$W_{so}^{N} = (g_{s} - g_{l}) \frac{e}{2m_{N}^{2}c^{2}} \left\langle \frac{1}{r} \frac{dV_{c}(r)}{dr} \right\rangle \left\langle l \cdot s \right\rangle$$

Nolen & Schiffer, Ann. Rev. Nuc. Sci, 1969

• given by.

It is sensitive to the proton and neutron content of the wave-function

J.Ekman et al PRL 92(2004)132502

The heaviest T=1/2 mirror pair: A=67

G. de Angelis et al., Proceedings of ENAM 2001

Single-particle shifts: Electromagnetic S-O effect

Assuming: Uniformly charged sphere, non-diffuse surface....

$$W_{so}^{N} = (g_{s} - g_{l}) \frac{e}{2m_{N}^{2}c^{2}} \left\langle \frac{1}{r} \frac{dV_{c}(r)}{dr} \right\rangle \langle \boldsymbol{I}.\boldsymbol{s} \rangle$$

M. Bemtley, FINUSTAR 05

А	J,T	lower	higher	"theo"(keV)	exp(keV)
31	9/2,1/2	S _{1/2}	f _{7/2}	-117	-125
31	13/2,1/2	S _{1/2}	f _{7/2}	-117	-247
35	13/2,1/2	d _{3/2}	f _{7/2}	-233	-320
39	13/2,1/2	d _{3/2}	f _{7/2}	-233	-314
47	3/2,1/2	d _{3/2}	f _{7/2}	232	212
48	1,1	d _{3/2}	f _{7/2}	232	174
48	4,1	d _{3/2}	f _{7/2}	232	170
61	5/2,1/2	p _{3/2}	f _{5/2}	194	147

Single-particle shifts: Electromagnetic S-O effect

Assuming: Uniformly charged sphere, non-diffuse surface....

$$W_{so}^{N} = (g_{s} - g_{l}) \frac{e}{2m_{N}^{2}c^{2}} \left\langle \frac{1}{r} \frac{dV_{c}(r)}{dr} \right\rangle \langle \boldsymbol{I}.\boldsymbol{s} \rangle$$

M. Bemtley, FINUSTAR 05

А	J, T	lower	higher	"theo"(keV)	exp(keV)
31	9/2,1/2	S _{1/2}	f _{7/2}	-117	-125
31	13/2,1/2	S _{1/2}	f _{7/2}	-117	-247
35	13/2,1/2	d _{3/2}	f _{7/2}	-233	-320
39	13/2,1/2	d _{3/2}	f _{7/2}	-233	-314
47	3/2,1/2	d _{3/2}	f _{7/2}	232	212
48	1,1	d _{3/2}	f _{7/2}	232	174
48	4,1	d _{3/2}	f _{7/2}	232	170
61	5/2,1/2	р _{3/2}	f _{5/2}	194	147
67	9/2,1/2	f5/2	g9/2	300	- 57

Simultaneous occupation of the same orbital by protons and neutrons

P+QQ Hamiltonian + T=0 monopole field

M. Hasegawa et al. / Physics Letters B 617 (2005) 150-156

155

odd nucleus

v = 0.51

⁶⁷ As	$\langle n^{\pi}_{a} \rangle$				$\langle n_a^ u angle$				Q
	$p_{3/2}$	$f_{5/2}$	$p_{1/2}$	<i>8</i> 9/2	p _{3/2}	f _{5/2}	$p_{1/2}$	89/2	
$1/2^{-}_{1}$	1.99	2.15	0.72	0.15	2.33	2.30	1.19	0.17	1.1
$3/2_1^{-}$	2.17	2.12	0.54	0.17	2.48	2.60	0.73	0.19	23.9
$5/2_1^{-}$	2.06	2.13	0.68	0.13	2.36	2.74	0.74	0.17	-13.8
$7/2_1^{-}$	2.04	2.19	0.62	0.15	2.36	2.78	0.68	0.18	-24.2
$7/2_2^{-}$	2.16	1.66	1.00	0.18	2.33	2.35	1.12	0.20	-1.5
$9/2_{1}^{+}$	1.69	1.93	0.65	0.73	2.26	2.43	0.81	0.51 🔫	-57.9
$13/2^+_1$	1.78	1.88	0.62	0.72	2.22	2.62	0.63	0.53	-57.8
$11/2^+_1$	1.75	1.77	0.75	0.73	2.19	2.34	0.88	0.59	-51.6
$15/2^{+}_{1}$	1.85	1.90	0.61	0.64	2.14	2.52	0.66	0.69	-56.4

 $n^{\pi} = 0.73$

M. Hasegawa et al., PLB 617 150 (2005)

Admixture of ⁶⁶Ge * $\pi g_{9/2}$ and ⁶⁶As * $\nu g_{9/2}$ Unique property of N=Z Using the calculated wave function $Wso(^{67}Se^{-67}As) = 20 \text{ keV}$ Nuclear structure at the limits: High spin behaviour

Spontaneous formation of chirality in rotating nuclei ?

What is Chirality?

"I call any geometrical figure, or group of points, chiral, and say it has chirality, if its image in a plane mirror, ideally realized, cannot be brought to coincide with itself." - Lord Kelvin 1904

Chirality via coupling of three angular momenta: odd-odd nuclei in the A~130 region

S. Frauendorf and J. Meng, Nucl. Phys. A 617 131 (1997); V. Dimitrov et. al., Phys. Rev. Lett. 84 5732 (2000).

The energies of the excited states for the left-handed and right-handed systems should be identical

V. I. Dimitrov et al, PRL 84 (2000) 5732

¹³⁴Pr

The energies of the excited states for the left-handed and right-handed systems should be identical

¹³⁴Pr : a case of chiral rotator ?

Systematics of partner bands in odd-odd A~130 nuclei

EM properties of chiral geometry

 $|I+\rangle = \frac{1}{\sqrt{2}}(|IL\rangle + |IR\rangle)$

 $|I-\rangle = \frac{i}{\sqrt{2}}(|IL\rangle - |IR\rangle)$

TME identical for the two bands

 $\langle IL \mid E2 \mid IR \rangle \approx 0$ $\langle IL \mid M1 \mid IR \rangle \approx 0$

$$\begin{split} B(EM;I_i+\to I_f+) &\approx B(EM;I_i-\to I_f-)\\ B(EM;I_i+\to I_f-) &\approx B(EM;I_i-\to I_f+) \end{split}$$

Calculated transition rates for πh_{11/2}νh_{11/2} p-h configuration in triaxial odd-odd nuclei

Lifetime measurements by RDDS in ¹³⁴Pr

The Köln Plunger

600

Lifetime measurements by RDDS and DSAM in ¹³⁴

Measurement of level lifetimes in the picosecond range

- measure matrix elements between nuclear wave functions
- direct measure of quadrupole moments (deformation)
- very important observable in nuclear structure

Experiment

Triaxial Vibrator

Exp. B(M1) NO staggering

Chirality predicts: B(M1) staggering

Good agreement with IBFFM

Incompatible with the predictions of static chirality!

Intermediate step \rightarrow Exogam, Miniball, SeGa : optimized for Doppler correction at low γ -multiplicitiy

The AGATA-PRISMA setup

The AGATA demonstrator

CLARA vs. AGATA demonstrator

Efficiency at 1MeV: ~2.6%
Peak/Total: ~40%
Angles covered: from 102° to 180°
FWHM, β~10%, 1MeV: 7 to 10 keV

Efficiency at 1MeV: ~6% at 14cm
Peak/Total: ~50%
Angles covered: from ~135° to 180°
FWHM, β~10%, 1MeV: <4 keV

Ex. Lifetime measurements by multinucleon transfer and Differential Plunger method

CLARA

AGATA

At v/c ~ 10% lifetimes in the range 1 to 10ps can be measured with target-degrader distances ranging from 30 to 400 μm

⁶⁰Fe – simulation based on existing experimental data

1000

All reconsidered and detting for without by belongerstand particularly

1400

1200

100

600

800

Perspectives: New ion injector: Beams up to ²³⁸U. Up-grading of the SC cavities: Beam intensities up to 100 pnA

ALPI Output with the two Injectors

Mid-term RNB Facility Based on a <u>40 MeV Proton</u> <u>Driver</u> and on the <u>Multi-</u> <u>Slice Direct Target Concept</u>

He.

126

The Multi-Slice Direct Target Concept

Evolution of the DT Approach

Cs 138÷143

Ba 139÷142

La 142÷144

- Total of 1200 hours operation with 10-12 µA of 42 MeV protons
- More than 120 different radioactive beams extracted
- 400 W deposited in target (power density is 97 W/g, as LNL-project)

Some ISOL facilities towards EURISOL

	Pri bea	mary am	P on target	Target	Fissions/s
ISOLDE	р	1 GeV 2 μΑ	0.4 KW	Direct onto U Convert.	~5x10 ¹²
HRIBF	р	40 MeV 10 μA	0.4 KW	DT	~5x10 ¹¹
TRIUMF	р	450 MeV	25 KW	DT (metal)	(Spallation)
EXCYTE	¹² C	45 AMeV	0.4 KW	DT	1.5x10 ^{4 8} Li beam
SPIRAL2	d	40 MeV 5 mA	200 KW	Converter	~10 ¹³
SPES-DT	р	40 MeV 0.2 mA	8 KW	DT - Multislice	~10 ¹³

PI Injector PIAVE

Reaccelerator RFQ

700m

RF Service Area

XTU-Tandem

Target & Mass Separation area

40 MeV 0.2 mA Driver

Summary

- Multi-nucleon transfer reactions using stable heavy beams are a powerful spectroscopic tool for neutron-rich nuclei. Future perspectives are based on high intensity beams of stable ions or neutron-rich RIBs
- Proton-rich nuclei are an efficient observatory for a direct insight into nuclear structure properties
- Electromagnetic properties at high spin are an essential t e s t f o r n e w s y m m e t r i e s
- New techniques and powerful Ge detectors based on gamma ray tracking are needed to realize such goal