γ-Spectroscopy at LNL: status and perspectives A.Gadea INFN-LNL

GASP

GASP:

 4π array, 40 Ge detectors 70% Designed for high spin studies in fusion-evaporation reactions Two configurations:

- I Ge + inner BGO ball Eff~3% (1.3MeV)
- II Ge closer + collimator Eff~ 5%

 (\mathbf{d})

T=0

W. Satula , R. Wyss Phys. Rev. Lett. 66 (2001) 52504 A.L. Goodmann Phys. Rev. C 63 (2001) 44325J. Dobaczewski et al., Phys. Rev. C 67 (2003) 034308

Present of GASP:

- GASP Configuration II
- Lifetime measurements campaigns with RDDS and DSA methods
- IKP Koeln Plunger device

Lifetime measurements provide vital information for:

•Shape evolution/coexistence (A.Goergen contribution)

•Chiral bands

- Magnetic & Antimagnetic rotation
- •Dynamic (critical-point) symmetries
- Isospin symmetry (S.Lenzi contribution)

•Etc...

P.H.Regan et al., Nucl. Phys.A583(95)351

A.J.Simons et al., Phys.Rev.Lett.91(04) 162501

Chiral symmetry realized in odd-odd triaxial nuclei?

Ideal B(M1) behaviour in chiral bands

B(E2) should be identical for the two Chiral bands

D. Tonev et al., to be published

Critical-Point Symmetries

Classification based only on the excitation energies and branching ratios is not always sufficient for a unambiguous assignment as was shown in the case of ¹⁰⁴Mo (P. G. Bizzeti and A. M. Bizzeti-Sona, Phys. Rev. C 66 (02) 031301R).

Recent lifetime experiment performed to test X(5) symmetry in the A~180 region (A.Dewald)

Short-term perspectives of GASP:

• GASP Configuration I & II with ancillary detectors

CLARA-PRISMA setup Efficiency 10

25 Euroball Clover detectors for Eγ= 1.3MeV Efficiency ~ 3 % Peak/Total ~ 45 % FWHM ~ 10 keV (at v/c = 10 %)

Multinucleon-Transfer and Deep Inelastic reactions as a tool to study moderately n-rich nuclei

- •Shell evolution at N=20 and N=50
- •Collectivity in n-rich A~60 region (Cr and Fe isotopes)
- In program:
- •Shell model in the 48Ca region
- •Quenching of the N=82 shell gap
- •Collectivity and critical-point symmetries in the ¹⁷⁰Dy region

N=20 and N=50 Shell Gaps

From our data the 1056.4 keV transition is the $4^+ \rightarrow 2^+$ member of the yrast cascade. The ⁵⁸Vg.s. is probably 3⁺, also predicted at low energies.

Agreement between experiment and E(5) limit calculations. Pure fp shell LSSM calculations also reproduce the experimental levels in this slightly deformed nucleus

5	⁸ Cr]			
8+ <u>4</u> 598	<u> </u>	<u>4</u> 442	<u> </u>	<u>4</u> 743	<u>4</u> 946
6+ <u>3</u> 219	<u> </u>	<u>3</u> 130	<u>2</u> 990	<u>3</u> 188	<u> </u>
4+ <u>1937</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>2</u> 051
2+ <u>880</u>	<u> 8</u> 80	<u> 8</u> 82	<u> </u>	<u> </u>	<u> </u>
0+ <u>0</u> EXP.	0 E(5)	0 IBA	0 KB3G	0 FPD6	0 GXPF1

N.Marginean et al., to be published

Short-term perspectives for CLARA-PRISMA:

Drawback of the setup: low efficiency for $\gamma - \gamma - PRISMA$ coincidences

Development of complementary ancillary devices for Doppler correction.

Measurement of γ -PRISMA and γ - γ -ancillary coincidences.

MCP array under development in collaboration with FLNR Dubna

Other perspectives:

Heavier beams from ALPI linac with the new positive ion injector PIAVE.

Summary

- LNL is hosting two arrays of Compton suppressed Ge detectors GASP and CLARA (until end 2006)
- The two arrays are used:
 - GASP mainly in spectroscopy with fusion evaporation reactions
 - The complex CLARA-PRISMA with binary reaction with heavy-ion beams.
- An "status of the art" physics program is being developed in both arrays, with the involvement of INFN and external users.
- GASP will work in the next years with several ancillary detectors and devices in configuration I and II.
- CLARA is as well being upgraded with an ancillary array to perform "in beam" $\gamma \gamma$ coincidences with Doppler correction
- Is foreseen the use of the AGATA clusters to gain efficiency in the CLARA-PRISMA setup

The CLARA-PRISMA collaboration

•France

IReS Strasbourg GANIL Caen

•U.K.

University of Manchester Daresbury Laboratory University of Surrey University of Paisley

•Germany

HMI Berlin

GSI Darmstadt

•Italy

INFN LNL-Legnaro INFN and University Padova INFN and University Milano INFN and University Genova INFN and University Torino INFN and University Napoli INFN and University Firenze University of Camerino

•Spain

University of Salamanca

•Romania Horia Hulubei NIPNE Bucharest

Experiments performed: March-November 2004 Search for excited states in neutron rich ³⁷P and ³⁹P using deep inelastic processes. Medium spin –spectroscopy of Ne, Mg, and Si neutron rich isotopes X.Liang, Paisley F.Azaiez, Orsay, Zs.Dombradi, Debrecen (³⁶S + ²⁰⁸Pb) •Nuclear spectroscopy of neutron rich nuclei in the N=50 region G.Duchene, Strasbourg, G.de Angelis, Legnaro $(^{82}Se + ^{238}U)$ Spectroscopy of deformed neutron rich A ~ 60 nuclei $(^{64}Ni + ^{238}U)$ S.M.Lenzi, Padova, S.J.Freeman, Manchester • Pair transfer effects in ⁹⁰Zr+²⁰⁸Pb L.Corradi, Legnaro $(^{90}Zr + ^{208}Pb)$ Isotensor MED across the f7/2 shell: identification of the 6+ state in ⁵⁴Co (⁵⁴Fe + ⁵⁸Ni) A.Gadea, Legnaro Resonances in 24Mg+24Mg and molecular states in 48Cr $(^{24}Mg + ^{24}Mg)$ F.Haas, Strasbourg $(^{32}S + {}^{58}Ni)$ Anomalous MED in ³¹S. D.R.Napoli, M.Marginean, Legnaro

⁸²Se + ²³⁸U E=505 MeV (ALPI) 4 days, PRISMA at θ_G=64° G.deAngelis, G.Duchêne Analysis: N.Marginean

Kr76	Kr77 74.4 m	Kr78	Kr79 35.04 h	Kr80	Kr81 2.29E+5 v	Kr82	Kr83	Kr84	Kr85	Kr86	Kr87 76.3 m	Kr88 2.84 h
0+	5/2+	0+	1/2-	0+	7/2+	0+	9/2+	0+	9/2+	-0+	5/2+	0+
		0.35		2.25		11.6	11.5	57.0		17.3		
Br75	Br76	Br77	Br78	Br79	Br80	Br81	Br82	Br83	Br84	Br85	Br86	Br87
96.7 m 3/2-	10.2 n 1-	3/2-	0.40 m 1+	3/2-	17.08 m 1+	3/2-	5- 5-	3/2-	51.8%m	2.90 m 3/2-	(2-)	3/2-
	*	*		\$0.69	0.77.52	40 31			•			
Se74	Se75	Se76	Se77	Se78	Se79	Se80	Se81	Se82	Se83	Se84	Se85	Se86
Gert	119.779 d	0010			1.13E6 y		18.45 m	1.08E+20 y	22.3 m	3.1 m	31.7 s	15.3 s
0+	5/2+	0+	1/2-	0+	7/2+	0+	1/2-	88	9/2+	0+	(5/2+)	0+
0.89		9.36	7.63	23.78		49.61		8.73				
As73	As74	As75	As76	As77	As78	As79	As80	4	As82	As83	As84	As85
3/2-	2-	3/2-	2-	3/2-	2-	3/2-	132.5		(1+)	(5/2-,3/2-)	4.02.5	(3/2-)
		100					•	-2n2	12.2			
Ge72	Ge73	Ge74	Ge75	Ge76	Ge77	Ge78	Ge79	TAN	Ge81	Ge82	Ge83	Ge84
			82.78 m		11.30 h	88.0 m	18.98 s		N-	4.60 s	1.85 s	966 ms
0+	9/2+	0+	1/2-	0+	7/2+	0+	(1/2)-		+2n	0+:	(5/2+)	0+
27.66	7.73	35.94		7.44								
Ga71	Ga72	Ga73	Ga74	Ga75	Ga76	Ga77	Ga78	Ga79	Ga80	Ga81	Ga82	Ga83
3/2-	3-	3/2-	(3-)	3/2-	(2+,3+)	(3/2-)	(3+)	(3/2-)	(3)	(5/2-)	(1,2,3)	0.513
39,892	A.22			•	10000000	100000		12000000	0.02250		12202-00	
Zn70	Zn71	Zn72	Zn73	Zn74	Zn75	Zn76	Zn77	Zn78	Zn79	Zn80	Zn81	Zn82
5E+14 y	2.45 m	46.5 h	23.5 s	95.6 s	10.2 s	5.7 s	2.08 s	1.47 s	995 ms	0.545 s	0.29 s	
0+	1/2-	0+	(1/2)-	0+	(7/2+)	0+	(7/2+)	0+	(9/2+)	0+		0+
0.6			•									
Cu69 2.85 m	Cu70	Cu71	Cu72	Cu73	Cu74	Cu75	Cu76	Cu77	Cu78	Cu79 188 ms	Cu80	
3/2-	(1+)	(3/2-)	(1+)	2.2.2	(1+,3+)	1	0.041.8	402 865		100 100		52
		•										52
Ni68	Ni69	Ni70	Ni71	Ni72	Ni73	Ni74	Ni75	Ni76	Ni77	Ni78		
19 s	11.45		1.86 s	2.1 s	0,90 s	1.1 s						
	•					0,						
10		10		11		11		10		50		
40		4/		44		40		48		120)	
						.0		.0				

Evolution of the N=50 shell: Searching for the shell gap quenching (onset of deformation as in N=20 Z~12)

⁸²Se + ²³⁸U E=505 MeV θ_{G} =64° IC \triangle E-E Matrix

E (A+B+C+D)

Stability of the N=50 Shell
down to Z~32Shell model with renormalized SPE (f_{5/2}-g_{9/2})
TBME: X.Ji & B.H. Wildenthal PRC 37(1988)1256
SPE: Lisetskiy et al., nucl-th/0402082

Space: $\pi f_{5/2} p_{3/2} p_{1/2} g_{9/2} v p_{1/2} g_{9/2} d_{5/2}$

The description of these semi-magic nuclei (within the shell model framework) can be done with a constant N=50 shell gap.

Y.H.Zhang et al., PRC 70(2004)024301

A.F. Lisetskiy, B.A.Brown, M. Horoy, H. Grawe nucl-th0402082 (G-Matrix based on Bonn-C)

N=51 *Monopole shift of the single particle levels ?*

Downward shift of the $\upsilon g_{7/2}$ in proton rich N=51 isotones as $\pi g_{9/2}$ is filled The $\upsilon d_{5/2}$ -h_{11/2} splitting is "constant" in neutron rich N=51 isotones: it should increase if the *ls* term was getting weaker – No diffused potential?

⁹⁰Zr 560MeV + ²⁰⁸Pb 1 day beam time (4 pnA) L.Corradi, C.A.Ur, et al.

Distance along focal plane

Nb89	Nb90	Nb 91	Nb92	Nb93	Nb94	Nb 95
1.9h (92H	1400h	924	3.478977 (7)+	9/24	2032447	34,976 4 972+
шс	me -	anc i	HIC D	100	ß	۵.
Zr88	Zr89	Z190	Zr 91	Ζπ 92	Tr 93	Zr94
83.44	78.4.h 9'2t	0 1		• 0+	1532467 574	0+
HC:	BC	9.45	11.72	1715	β	17Æ
Y87	¥88	¥ 39	¥90	¥91	¥92	¥93
79.8h 172	105654	1/2.	6410h 2-	589.4 172	354h	1018h 172
нс	me .	100	6	1.000	6	в —
ST86	Sr 87	ST 88	Sr89	ST90	Sr91	Sr92
04	0.24	v ⊢	90534 924	22.27	9:03h - 524	2.71.6 0#
0.797	300		6	6	0	о, 6
Bh85	Bh86	Rh \$7	P Rh88	P Bh89	BLOD	P Bh 91
	12014	479007	17.78m	1515m	19.	₿.A.
572	2	-32- (L	2	3/2	а	3(3-)
72166	EC,β.	27.57H	β	β	β	β

Spectroscopy of deformed neutron rich A ~ 60 nuclei

Goal: n-rich <u>A~60 (Cr,Fe</u> <u>&Ti) nuclei</u>, deformation effects in the middle of the $\pi f_{7/2} \nu pf$ -shell ⁶⁴Ni 400MeV + ²³⁸U

S.M.Lenzi, S.J.Freeman Analysis: N.Marginean

Preliminary (only 1/2 sorted)

MASS & Z selection

⁶⁴Ni 400MeV + ²³⁸U IC **ΔE-E** matrix

E (A+B+C+D)

Present at LNL :

Tandem – ALPI beams (therefore Tandem beams) up to A~100. Beam intensities increased up to few pnA (6pnA for 82Se, 4pnA for 90Zr) due to the ALPI energy upgrade (equivalent to ~32MV). Heavier beams available with the low β cavities.

Perspectives:

Positive ion injector ECRIS + PIAVE commissioned with O and Kr beams. Transmission 40%. Ar, Kr and Xe (also Ag and Cu) beams during 2005, program to develop Sn, Cd, Sm and Pb beams at the ECR started

Summary

- The CLARA-PRISMA setup consisting on an array of 25 EUROBALL Clover detectors coupled with the large acceptance magnetic spectrometer PRISMA is installed and fully functional al LNL.
- The first preliminary result show the capabilities of such installation in combination with the stable beam delivered by the LNL Tandem-ALPI complex. In the future with PIAVE-ALPI.
- In a single few days experiment ~50 nuclei could be studied.
- At the present stage of the instrument and for most cases, additional experimental information is required to build the level scheme once the transitions are assigned.
- The first results show how experiments with stable beams and instruments as CLARA-PRISMA can contribute to the study of exotic nuclei

Analysis of PRISMA (CLARA) data

A complete tracking algorithm for PRISMA was developed

Ingredients

Entrance detector position (MCP) TOF Entrance detector- MWPPAC (~5m) Focal Plane position MWPPAC + IC Total Energy and Z (Δ E/E) from IC

CLARA Doppler correction

Energy resolution of 1% at recoil velocity v/c = 10%

⁸²Se+²³⁸U with ⁸²Se selected in PRISMA

VOLUME 59, NUMBER 1

Multinucleon transfer processes in ⁶⁴Ni+²³⁸U

L. Corradi, A. M. Stefanini, and C. J. Lin

Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Via Romea 4, I-35020 Legnaro, Padova, Italy

Lifetime measurements with the Clover array at Prisma

Recoil Shadow anisotropy method:

Based on the array-collimator geometry. Lifetimes ranging from ~0.5 to ~20 ns. E.Gueorguieva et al. NIM A 474 (2001) 132.

- Differential Plunger method (to be developed): Needs a degrader foil at different distances form target. Lifetimes ranging from ~1 ps to ~1 ns.
- RFD method:

Developed at the Krakow Recoil Filter Detector.

Based on the line shape analysis of the Doppler shifted lines and the change of momentum introduced by the straggling of the products in the target.

Needs an accurate position sensitive detector as the PRISMA start MCP .

Lifetimes ranging from ~50 fs to ~1 ps.

P.Bednarczyk, W.Meczynski, J.Styczen et al.

Recoil Shadow Anisotropy Method

For EUROBALL: E.Gueorguieva et al. NIM A 474 (2001) 132

A short lifetime determination with RFD

 $68 \text{MeV}^{18}\text{O} + 0.8 \text{mg/cm}^{2}^{30}\text{Si};$ Recoil transit time $\approx 0.4 \text{ ps}$

The range of measured lifetimes can be chosen by a selection of the target thickness. In the measurement τ ranging from 40 to 800 fs could be determined.

P.Bednarczyk, W.Meczynski, J.Styczen et al.

N\$2002@LNL

N. Marginean et al. Phys. Rev. C 65 (2002) 051303(R)

D. Bucurescu et al. Phys. Rev. C 56 (1997) 2497

Delayed alignment in the N=Z nuclei ⁸⁴Mo and ⁸⁸Ru

N. Marginean et al. Phys. Rev. C 65 (2002) 051303(R)

N. Marginean et al. Phys. Rev. C 63 (2001) 031303(R)

neutron-proton residual interaction (Y. Sun)

Identification of ⁸⁸Ru

GASP + ISIS + 6 n-detectors

⁵⁸Ni + ³²Si 105MeV

N. Marginean et al. Phys. Rev. C 65 (2002) 051303(R)

CLARA-PRISMA setup

PRISMA: Large acceptance Magnetic Spectrometer

$$\begin{split} \Omega &= 80 \text{ msr} \\ \Delta \text{Z/Z} &\approx 1/60 \text{ (Measured)} \\ \Delta \text{A/A} &\approx 1/190 \text{ (Measured)} \\ \text{Energy acceptance } \pm 20\% \\ \text{B}\rho &= 1.2 \text{ T.m} \end{split}$$

The PRISMA Spectrometer Detectors

10 sections Multiwire PPAC

S.Beghini et al. LNL annual Report 2000 pg.163 10 x 4 sections Ionization Chamber

