γ-Spectroscopy with the CLARA-PRISMA setup

A.Gadea INFN-LNL (for the CLARA and PRISMA collaboration)

Brief description of the setup
Results from n-rich light (A~30) to medium mass (A~90) nuclei

Exotic excitations and nuclear clustering studies

Developments

PRISMA: Large acceptance tracking Magnetic Spectrometer Q-D

$$\begin{split} \Omega &= 80 \text{ msr} \\ \Delta \text{Z/Z} &\approx 1/60 \text{ (Measured)} \\ \Delta \text{A/A} &\approx 1/190 \text{ (Measured) TOF} \\ \text{Energy acceptance } \pm 20\% \\ \text{B}\rho &= 1.2 \text{ T.m} \end{split}$$

MCP Start Detector

X.Y &

Ionisation Chamber 10x4 sect. DE - E

MWPPAC Detector

10 sect. X,Y & T_F

CLARA-PRISMA setup

25 Euroball Clover detectors (from the EU GammaPool) for Eγ= 1.3MeV Efficiency ~ 3 % Peak/Total ~ 45 % FWHM < 10 keV (at v/c = 10 %)

Multinucleon-Transfer and Deep Inelastic reactions as a tool to study moderately n-rich nuclei

•Shell evolution at N=20 and N=50

•Collectivity in n-rich A~60 region (Cr and Fe isotopes)

•Pairing vibration states populated with QE transfer (S.Szilner contribution)

Shell model in the 48Ca region

•Quenching of the N=82 shell gap

•Collectivity and critical-point symmetries in n-rich nuclei

N=20 and N=50 Shell Gaps

The spacing between the 2⁺ and 4⁺ can suggest, to good extent the shapes of the N~20 nuclei

M.Stanoiu, F.Azaiez (IPN Orsay) X.Liang (Manchester)

⁸²Se + ²³⁸U E=505 MeV (ALPI) 4 days, PRISMA at θ_G=64° G.deAngelis, G.Duchêne Analysis: N.Marginean

Kr76	Kr77 74.4 m	Kr78	Kr79 35.04 h	Kr80	Kr81 2.29E+5 v	Kr82	Kr83	Kr84	Kr85	Kr86	Kr87 76.3 m	Kr88 2.84 h
0+	5/2+	0+	1/2-	0+	7/2+	0+	9/2+	0+	9/2+	-0+	5/2+	0+
		0.35		2.25		11.6	11.5	57.0		17.3		
Br75	Br76	Br77	Br78	Br79	Br80	Br81	Br82	Br83	Br84	Br85	Br86	Br87
96.7 m 3/2-	10.2 n 1-	3/2-	0.40 m 1+	3/2-	17.08 m 1+	3/2-	5- 5-	3/2-	51.8%m	2.90 m 3/2-	(2-)	3/2-
	*	*		\$0.69	0.77.52	40 31			•			
Se74	Se75	Se76	Se77	Se78	Se79	Se80	Se81	Se82	Se83	Se84	Se85	Se86
Gert	119.779 d	0010			1.13E6 y		18.45 m	1.08E+20 y	22.3 m	3.1 m	31.7 s	15.3 s
0+	5/2+	0+	1/2-	0+	7/2+	0+	1/2-	88	9/2+	0+	(5/2+)	0+
0.89		9.36	7.63	23.78		49.61		8.73				
As73	As74	As75	As76	As77	As78	As79	As80	4	As82	As83	As84	As85
3/2-	2-	3/2-	2-	3/2-	2-	3/2-	132.5		(1+)	(5/2-,3/2-)	4.02.5	(3/2-)
		100					•	-2n2	12.2			
Ge72	Ge73	Ge74	Ge75	Ge76	Ge77	Ge78	Ge79	TAN	Ge81	Ge82	Ge83	Ge84
			82.78 m		11.30 h	88.0 m	18.98 s		N-	4.60 s	1.85 s	966 ms
0+	9/2+	0+	1/2-	0+	7/2+	0+	(1/2)-		+2n	0+:	(5/2+)	0+
27.66	7.73	35.94		7.44								
Ga71	Ga72	Ga73	Ga74	Ga75	Ga76	Ga77	Ga78	Ga79	Ga80	Ga81	Ga82	Ga83
3/2-	3-	3/2-	(3-)	3/2-	(2+,3+)	(3/2-)	(3+)	(3/2-)	(3)	(5/2-)	(1,2,3)	0.213
39,892	A.22			•	10000000	100000		12000000	0.02250		12202-00	
Zn70	Zn71	Zn72	Zn73	Zn74	Zn75	Zn76	Zn77	Zn78	Zn79	Zn80	Zn81	Zn82
5E+14 y	2.45 m	46.5 h	23.5 s	95.6 s	10.2 s	5.7 s	2.08 s	1.47 s	995 ms	0.545 s	0.29 s	
0+	1/2-	0+	(1/2)-	0+	(7/2+)	0+	(7/2+)	0+	(9/2+)	0+		0+
0.6			•									
Cu69 2.85 m	Cu70	Cu71	Cu72	Cu73	Cu74	Cu75	Cu76	Cu77	Cu78	Cu79 188 ms	Cu80	
3/2-	(1+)	(3/2-)	(1+)	2.2.2	(1+,3+)	1	0.041.8	402 865		100 100		52
		•										52
Ni68	Ni69	Ni70	Ni71	Ni72	Ni73	Ni74	Ni75	Ni76	Ni77	Ni78		
19 s	11.45		1.86 s	2.1 s	0,90 s	1.1 s						
	•					0,						
10		10		11		11		10		50		
40		4/		44		40		48		120)	
						.0		.0				

Evolution of the N=50 shell: Searching for the shell gap quenching (onset of deformation as in N=20 Z~12)

A.F. Lisetskiy, B.A.Brown, M. Horoy, H. Grawe nucl-th0402082 (G-Matrix based on Bonn-C)

From our data the 1057 keV transition is the $4^+ \rightarrow 2^+$ member of the yrast cascade. Therefore ⁵⁸Vg.s. is probably 3⁺, also predicted at low energies.

Experimental Study of Nuclear Molecular States

Inelastic decay of the J^{π} = 36⁺ resonance in the 24Mg + 24Mg reaction

M.-D. Salsac, F. Haas, S. Courtin (IReS, Strasbourg) et al.

Direct feeding of the ²⁴Mg states:

• Resonance is seen in the 2⁺, 4⁺ g.s band members and also in the 0⁺ g.s (from other measurements) . In the inelastic channels, the ${}^{24}Mg + {}^{24}Mg$ resonance flux is essentially observed in the 2⁺ and 4⁺ states of the ${}^{24}Mg$ g.s band.

• This is in agreement with the molecular model proposed by Abe and Uegaki (*Phys. Lett.231B (1989) 28*) to describe the ²⁴Mg + ²⁴Mg high spin resonances.

• All the direct channels absorb only ~30% of the resonance flux. CN ~70%? Experiment GASP-EUCLIDES

-0-

radial mode

M.-D. Salsac, F. Haas, S. Courtin (IReS, Strasbourg) et al.

⁹⁰Zr 560MeV + ²⁰⁸Pb 1 day beam time L.Corradi, C.A.Ur, et al.

Distance along focal plane

Nb89	Nb90	Nb 91	Nb92	Nb93	Nb94	Nb 95
1.9h (0224)	1400h		3.4799477	0/74	2032447	34 <i>9</i> 75-4 0724
(2021)					(sa 1	Α
HL:	<u>шо</u> :	pec:	arti s	1000	P	2
Zr88 83.44	International Tables	Z 1 90	76791	76792	15310 T	ZT94
0+	9/2+	0+	aer	• 0+	52+	0+
EC	EC .	9.46	11.ZZ	1715	β	17.E
Y87	Y88	Y 39	¥90	<u>Y91</u>	¥92	¥93
/MSh	100094		GATON	2821.9	054h	10186
166	4	<u>ц</u> с-	8	164	6	169
EC .	BC .	1 10	Þ		ß	Þ
ST86	Sr 87	ST 88	Sr89	ST90	Sr91	Sr92
	A 191		50534	22.27	903h	2.71 h
UFF	9124	UF	524	0+	5724	UF
935	7.00	<u>895</u> 8	P	β	P	þ
Rb85	Rb86	B b 87	<u>Rb88</u>	Rb89	Rb90	Rb91
C 17	18014	4/4007	17.78m	1515m	1987	95.4c 371)
	- - -	6				
72165	BC,β	37.5°H	β	β	IP .	β

Short-term perspectives for CLARA-PRISMA:

Drawback of the setup: low efficiency for $\gamma - \gamma - PRISMA$ coincidences: Development of complementary ancillary devices for Doppler correction.

Measurement of γ -PRISMA coincidences (Identification) and γ - γ -ancillary coincidences (γ - γ -coincidences with Doppler correction).

DANTE: MCP array under development in collaboration with FLNR Dubna

Development of the Differential Plunger RDDS technique for CLARA-PRISMA (IKP-Koeln)

Heavier beams from ALPI linac with the new positive ion injector PIAVE.

Positive ion injector ECRIS + PIAVE commissioned beginning 2005 with O and Kr beams. July 2005 PIAVE beam accelerated by ALPI.

PIAVE beams for users expected spring 2006.

Summary:

-Spectroscopy with quasi-elastic multinucleon transfer and deep-inelastic collisions, using the CLARA-PRISMA setup and the medium-mass and heavy beams from LNL, provides valuable structure information on moderately n-rich nuclei. -Differential RDDS technique is been developed in collaboration with IKP-Koeln, first experimental effort in the next months.

-CLARA is being upgraded with an ancillary array to perform "in beam" $\gamma-\gamma$ coincidences with Doppler correction. -Is foreseen to start the use of the CLARA-PRISMA setup with the medium-mass and heavy beams from PIAVE by spring 2006.

The CLARA-PRISMA collaboration

•France

IReS Strasbourg GANIL Caen

•U.K.

University of Manchester Daresbury Laboratory University of Surrey University of Paisley

•Germany

HMI Berlin

GSI Darmstadt

•Italy

INFN LNL-Legnaro INFN and University Padova INFN and University Milano INFN and University Genova INFN and University Torino INFN and University Napoli INFN and University Firenze University of Camerino

•Spain

University of Salamanca

•Romania Horia Hulubei NIPNE Bucharest

Fusion06

International Conference on Reaction Mechanisms and Nuclear Structure at the Coulomb Barrier March 19-23, 2006 - S. Servolo, Venezia - Italy

> URL: http://www.lnl.infn.it/~fusion06/ E-mail : fusion06@lnl.infn.it

International Advisory Committee

N. Alamanos (Saclay, France) C. Beck (Strasbourg, France) R. Broda (Krakow, Poland) H. Esbensen (Argonne, USA) D. Hinde (Canberra, Australia) M. Hussein (Sao Paulo, Brasil) M.G. Itkis (Dubna, Russia) R. Julin (Jyväskylä, Finland) A.M. Stefanini (Legnaro, Italy) N. Takigawa (Sendai,Japan) A. Vitturi (Padova, Italy) W. von Oertzen (Berlin, Germany) H.Q. Zhang (Bejing, China)

Organizing Committee

L. Corradi (INFN-Legnaro, Italy) Chair D. Ackermann (GSI, Germany) A. Gadea (INFN- Legnaro, Italy) E. Fioretto (INFN-Legnaro, Italy) F. Haas (IN2P3-IReS, France) G. Pollarolo (Univ. Torino, Italy) F. Scarlassara (Univ.Padova, Italy) S. Szilner (RBI, Croatia) M. Trotta (INFN-Napoli, Italy)

Topics

Near-barrier fusion reactions Fusion-fission dynamics Reaction dynamics with weakly bound nuclei Nuclear reactions of astrophysical interest Production and spectroscopy of heavy and superheavy elements Quasi-elastic and deep-inelastic reactions Nuclear structure explored in binary reactions Clusters in nuclear structure and dynamics

From our data the 1056.4 keV transition is the $4^+ \rightarrow 2^+$ member of the yrast cascade. The ⁵⁸Vg.s. is probably 3⁺, also predicted at low energies.

Agreement between experiment and E(5) limit calculations. Pure fp shell LSSM calculations also reproduce the experimental levels in this slightly deformed nucleus

5	⁸ Cr]			
8+ <u>4⁵⁹⁸</u>	<u> 4</u> 550	<u>4</u> 442	<u> </u>	<u>4</u> 743	<u>4</u> 946
6+ <u>3</u> 219	<u> </u>	<u> </u>	<u>2</u> 990	<u>3</u> 188	<u>3</u> 299
4+ <u>1937</u>	<u> 1</u> 936	<u> </u>	<u> </u>	<u> </u>	<u>2</u> 051
2+ <u>880</u>	<u> 8</u> 80	<u> 8</u> 82	<u> </u>	<u> </u>	<u>1</u> 102
0+ <u>0</u> EXP.	0 E(5)	0 IBA	0 KB3G	0 FPD6	0 GXPF1

N.Marginean et al., to be published

Experiments performed: March-November 2004 Search for excited states in neutron rich ³⁷P and ³⁹P using deep inelastic processes. Medium spin –spectroscopy of Ne, Mg, and Si neutron rich isotopes X.Liang, Paisley F.Azaiez, Orsay, Zs.Dombradi, Debrecen (³⁶S + ²⁰⁸Pb) •Nuclear spectroscopy of neutron rich nuclei in the N=50 region G.Duchene, Strasbourg, G.de Angelis, Legnaro $(^{82}Se + ^{238}U)$ Spectroscopy of deformed neutron rich A ~ 60 nuclei $(^{64}Ni + ^{238}U)$ S.M.Lenzi, Padova, S.J.Freeman, Manchester • Pair transfer effects in ⁹⁰Zr+²⁰⁸Pb L.Corradi, Legnaro $(^{90}Zr + ^{208}Pb)$ Isotensor MED across the f7/2 shell: identification of the 6+ state in ⁵⁴Co (⁵⁴Fe + ⁵⁸Ni) A.Gadea, Legnaro Resonances in 24Mg+24Mg and molecular states in 48Cr $(^{24}Mg + ^{24}Mg)$ F.Haas, Strasbourg $(^{32}S + {}^{58}Ni)$ Anomalous MED in ³¹S. D.R.Napoli, M.Marginean, Legnaro

⁸²Se + ²³⁸U E=505 MeV (ALPI) 4 days, PRISMA at θ_G=64° G.deAngelis, G.Duchêne Analysis: N.Marginean

Kr76	Kr77 74.4 m	Kr78	Kr79 35.04 h	Kr80	Kr81 2.29E+5 v	Kr82	Kr83	Kr84	Kr85	Kr86	Kr87 76.3 m	Kr88 2.84 h
0+	5/2+	0+	1/2-	0+	7/2+	0+	9/2+	0+	9/2+	-0+	5/2+	0+
		0.35		2.25		11.6	11.5	57.0		17.3		
Br75	Br76	Br77	Br78	Br79	Br80	Br81	Br82	Br83	Br84	Br85	Br86	Br87
96.7 m 3/2-	10.2 n 1-	3/2-	0.40 m 1+	3/2-	17.08 m 1+	3/2-	5- 5-	3/2-	51.8%m	2.90 m 3/2-	(2-)	3/2-
	*	*		\$0.69	0.77.52	40 31			•			
Se74	Se75	Se76	Se77	Se78	Se79	Se80	Se81	Se82	Se83	Se84	Se85	Se86
Gert	119.779 d	0010			1.13E6 y		18.45 m	1.08E+20 y	22.3 m	3.1 m	31.7 s	15.3 s
0+	5/2+	0+	1/2-	0+	7/2+	0+	1/2-	88	9/2+	0+	(5/2+)	0+
0.89		9.36	7.63	23.78		49.61		8.73				
As73	As74	As75	As76	As77	As78	As79	As80	4	As82	As83	As84	As85
3/2-	2-	3/2-	2-	3/2-	2-	3/2-	132.5		(1+)	(5/2-,3/2-)	4.02.5	(3/2-)
		100					•	-2n2	12.2			
Ge72	Ge73	Ge74	Ge75	Ge76	Ge77	Ge78	Ge79	TAN	Ge81	Ge82	Ge83	Ge84
			82.78 m		11.30 h	88.0 m	18.98 s		N-	4.60 s	1.85 s	966 ms
0+	9/2+	0+	1/2-	0+	7/2+	0+	(1/2)-		+2n	0+:	(5/2+)	0+
27.66	7.73	35.94		7.44								
Ga71	Ga72	Ga73	Ga74	Ga75	Ga76	Ga77	Ga78	Ga79	Ga80	Ga81	Ga82	Ga83
3/2-	3-	3/2-	(3-)	3/2-	(2+,3+)	(3/2-)	(3+)	(3/2-)	(3)	(5/2-)	(1,2,3)	0.513
39,892	A.22			•	10000000	100000		12000000	0.02250		12202-00	
Zn70	Zn71	Zn72	Zn73	Zn74	Zn75	Zn76	Zn77	Zn78	Zn79	Zn80	Zn81	Zn82
5E+14 y	2.45 m	46.5 h	23.5 s	95.6 s	10.2 s	5.7 s	2.08 s	1.47 s	995 ms	0.545 s	0.29 s	
0+	1/2-	0+	(1/2)-	0+	(7/2+)	0+	(7/2+)	0+	(9/2+)	0+		0+
0.6			•									
Cu69 2.85 m	Cu70	Cu71	Cu72	Cu73	Cu74	Cu75	Cu76	Cu77	Cu78	Cu79 188 ms	Cu80	
3/2-	(1+)	(3/2-)	(1+)	2.2.2	(1+,3+)	1	0.041.8	402 865		100 100		52
		•										52
Ni68	Ni69	Ni70	Ni71	Ni72	Ni73	Ni74	Ni75	Ni76	Ni77	Ni78		
19 s	11.45		1.86 s	2.1 s	0,90 s	1.1 s						
	•					0,						
10		10		11		11		10		50		
40		4/		44		40		48		120)	
						.0		.0				

Evolution of the N=50 shell: Searching for the shell gap quenching (onset of deformation as in N=20 Z~12)

⁸²Se + ²³⁸U E=505 MeV θ_{G} =64° IC Δ E-E Matrix

E (A+B+C+D)

Stability of the N=50 Shell
down to Z~32Shell model with renormalized SPE (f_{5/2}-g_{9/2})
TBME: X.Ji & B.H. Wildenthal PRC 37(1988)1256
SPE: Lisetskiy et al., nucl-th/0402082

Space: $\pi f_{5/2} p_{3/2} p_{1/2} g_{9/2} v p_{1/2} g_{9/2} d_{5/2}$

The description of these semi-magic nuclei (within the shell model framework) can be done with a constant N=50 shell gap.

Y.H.Zhang et al., PRC 70(2004)024301

⁶⁴Ni 400MeV + ²³⁸U IC **ΔE-E** matrix

E (A+B+C+D)

Analysis of PRISMA (CLARA) data

A complete tracking algorithm for PRISMA was developed

Ingredients

Entrance detector position (MCP) TOF Entrance detector- MWPPAC (~5m) Focal Plane position MWPPAC + IC Total Energy and Z (Δ E/E) from IC

CLARA Doppler correction

Energy resolution of 1% at recoil velocity v/c = 10%

⁸²Se+²³⁸U with ⁸²Se selected in PRISMA

VOLUME 59, NUMBER 1

Multinucleon transfer processes in ⁶⁴Ni+²³⁸U

L. Corradi, A. M. Stefanini, and C. J. Lin

Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Via Romea 4, I-35020 Legnaro, Padova, Italy

Lifetime measurements with the Clover array at Prisma

Recoil Shadow anisotropy method:

Based on the array-collimator geometry. Lifetimes ranging from ~0.5 to ~20 ns. E.Gueorguieva et al. NIM A 474 (2001) 132.

- Differential Plunger method (to be developed): Needs a degrader foil at different distances form target. Lifetimes ranging from ~1 ps to ~1 ns.
- RFD method:

Developed at the Krakow Recoil Filter Detector.

Based on the line shape analysis of the Doppler shifted lines and the change of momentum introduced by the straggling of the products in the target.

Needs an accurate position sensitive detector as the PRISMA start MCP .

Lifetimes ranging from ~50 fs to ~1 ps.

P.Bednarczyk, W.Meczynski, J.Styczen et al.

Recoil Shadow Anisotropy Method

For EUROBALL: E.Gueorguieva et al. NIM A 474 (2001) 132

A short lifetime determination with RFD

 $68 \text{MeV}^{18}\text{O} + 0.8 \text{mg/cm}^{2}^{30}\text{Si};$ Recoil transit time $\approx 0.4 \text{ ps}$

The range of measured lifetimes can be chosen by a selection of the target thickness. In the measurement τ ranging from 40 to 800 fs could be determined.

P.Bednarczyk, W.Meczynski, J.Styczen et al.

N\$2002@LNL

The PRISMA Spectrometer Detectors

10 sections Multiwire PPAC

S.Beghini et al. LNL annual Report 2000 pg.163 10 x 4 sections Ionization Chamber

