The CLARA – PRISMA setup: Status and perspectives at LNL

Spokesperson: A.Gadea INFN-LNL Legnaro

Gamma Spectroscopy in products of binary reactions with intense stable beams

- Moderately neutron rich nuclei produced by Multi-nucleon transfer or deep inelastic collisions
- Non-Yrast states populated in quasielastic reactions

The CLARA (Clover array)+ Prisma set-up

- 25 Clovers setup
- Efficiency ~ 3 %
- Peak/Total ~ 45 %
- Position θ = 104°-180°
- FWHM ~ 10 keV for E_{γ} = 1.3 MeV at v/c = 10 %

The PRISMA Spectrometer Detectors

G.Montagnoli et al. LNL annual Report 2000 pg.165

10 sections Multiwire PPAC

S.Beghini et al. LNL annual Report 2000 pg.163 10 x 4 sections Ionization Chamber

Position sensitive MCP

Developed in the collaboration: INFN-Padova, JINR Dubna, INFN-LNL

Commissioning X-TOF matrix for: 56Fe + 197Au θPRISMA = 70°

Without condition in the entrance MCP detector

With gate 69.7-70.3 in the entrance MCP detector

Analysis performed by A.Latina

Ionization Chamber ∆E-E matrix 64Ni 400MeV + 238U

CLARA status

22 CLOVER detectors installed in the frame. Average resolution ~2.3 keV

Experimental P/T ratio ~44% New beam line mechanics ready. LN2 Filling system (IReS) stable.

Data acquisition, merging and VXI electronics stable. DAQ rates ~20KHz at ~50% dead time GUI (OCP + MIDAS) ready. HV control system ready Trigger electronics ready

90Zr 560MeV + 208Pb Spokesperson: L.Corradi

Very Preliminary Results Spokespersons: G.Duchêne & G. de Angelis

Present constrains at LNL :

Tandem – ALPI beams (therefore Tandem beams) up to A~100. Beam intensities increased up to few pnA (6pnA for 82Se, 4pnA for 90Zr) due to the ALPI energy upgrade (equivalent to ~32MV).

Developments:

Positive ion injector ECRIS + PIAVE (commissioning with ALPI expected September 2004). Ar, Kr and Xe (also Ag and Cu) beams early 2005, program to develop Sn, Cd, Sm and Pb beams at the ECR started

Physics Program

• Experiments already performed:

F.Azaiez-X.Liang: N=20 shell closure G.Duchene-G.de Angelis: N=50 shell closure S.Lenzi-S.Freeman: Deformed N-rich A~60 nuclei L.Corradi: Pairing vibrational states in 90Zr

• To be performed:

Shell model in the ⁴⁸Ca The N=32 Shell closure Mirror Energy differences in the sd and f7/2 shells

• Perspectives:

Dynamic symmetries Non-yrast exotic shapes Shell model in the ¹³²Sn region (PIAVE-ALPI) and in the neighbourhood of ⁷⁸Ni

High spin states in light n-rich nuclei in the N=20-28 region

Lifetime measurements with the Clover array at Prisma

Recoil Shadow anisotropy method:

Based on the array-collimator geometry. Lifetimes ranging from ~0.5 to ~20 ns. E.Gueorguieva et al. NIM A 474 (2001) 132.

- Differential Plunger method (to be developed): Needs a degrader foil at different distances form target. Lifetimes ranging from ~1 ps to ~1 ns.
- RFD method:

Developed at the Krakow Recoil Filter Detector.

Based on the line shape analysis of the Doppler shifted lines and the change of momentum introduced by the straggling of the products in the target.

Needs an accurate position sensitive detector as the PRISMA start MCP .

Lifetimes ranging from ~50 fs to ~1 ps.

P.Bednarczyk, W.Meczynski, J.Styczen et al.

Recoil Shadow Anisotropy Method

For EUROBALL: E.Gueorguieva et al. NIM A 474 (2001) 132

 $68 \text{MeV}^{18}\text{O} + 0.8 \text{mg/cm}^{2}^{30}\text{Si};$ Recoil transit time $\approx 0.4 \text{ ps}$

The range of measured lifetimes can be chosen by a selection of the target thickness. In the measurement τ ranging from 40 to 800 fs could be determined.

P.Bednarczyk, W.Meczynski, J.Styczen et al.

The CLARA-PRISMA collaboration

•France

IReS Strasbourg

•U.K.

University of Manchester Daresbury Laboratory University of Surrey University of Paisley

•Germany

HMI Berlin

GSI Darmstadt

Italy

INFN LNL-Legnaro INFN and University Padova INFN and University Milano INFN and University Genova INFN and University Torino INFN and University Napoli INFN and University Firenze University of Camerino

•Spain

University of Salamanca

•Romania Horia Hulubei NIPNE Bucharest