Study of the 40 Ar + 208 Pb reaction using the 40 Ar Piave-ALPI test beam and the Prisma-Clara set-up

A.M.Stefanini¹, N.Marginean¹, L.Corradi¹, F.Della Vedova¹, E.Fioretto¹, A.Gadea¹,

I.Pokrovskiy¹, R.Orlandi¹, E.Sahin¹, J.J.Valiente-Dobón¹, S.Beghini², P.Mason², G.Montagnoli²,

F.Scarlassara², M.Trotta³, S.Szilner⁴, J.Wrzesinski⁵, G.Pollarolo⁶, J.R.B.Oliveira⁷, D.Mengoni⁸

1 INFN, Laboratori Nazionali di Legnaro 2 Dipartimento di Fisica and INFN, Padova 3 Dipartimento di Fisica and INFN, Napoli 4 Ruđer Bošković Institute, Zagreb, Croatia 5 Institute of Nuclear Physics, Krakow, Poland 6 Dipartimento di Fisica and INFN, Torino 7 Instituto de Fisica,

Universidade de So Paulo, Brazil 8 Universita' di Camerino and INFN, Perugia

The study of few- and multi-nucleon transfer reactions in the system ${}^{40}\text{Ar} + {}^{208}\text{Pb}$ may offer interesting results, also in the comparison with what we obtained in the recent study of ${}^{40}\text{Ca} + {}^{208}\text{Pb}$ where clear evidences of simultaneous nucleon pair transfer have been found. Moreover, the case of ${}^{40}\text{Ar} + {}^{208}\text{Pb}$ is attractive from the point of view of the possibility of populating neutron-rich nuclei in the sulphur-silicon region with non-negligible cross sections, for nuclear structure studies.

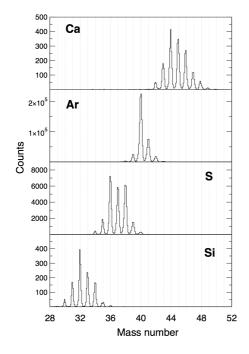


FIG. 1: Examples of mass spectra measured in the reaction ${}^{40}Ar + {}^{208}Pb$.

A preliminary run was recently performed at the combined PRISMA-CLARA facility, using the ${}^{40}\text{Ar}^{9+}$ beam produced by the new ECR source - positive ion injector (PIAVE) feeding the ions into the superconductive Linac ALPI for final acceleration. The beam energy on the target was 252 MeV and its intensity was 8 pnA on the average. The beam quality and stability were quite good over the two days of the test experiment; the spot on the target had a nearly spherical shape with about 3 mm diameter. The target was a $300\mu g/cm^2$ evaporation (a 2 mm strip) of enriched ²⁰⁸Pb onto a 15 $\mu g/cm^2$ carbon foil. The Prisma spectrometer was placed at $\theta_{lab}=66^{\circ}$ (around the grazing angle), and the ionization chamber at the focal plane was operated with Freon at a pressure of 30 mbar, with very good energy resolution. The γ -ion coincidence rate was around 300 Hz. These experimental conditions allowed the acquisition of very clean events, and the obtained Z and mass spectra are of a very good quality (see Fig. 1). Fig. 2 shows the mass distributions for several elements. It is seen that many neutron-rich nuclei, like for instance ⁵⁰Ca, ⁴¹S, ³⁶Si, ³³Al and ²⁹Mg, are populated by multi-nucleon transfer.

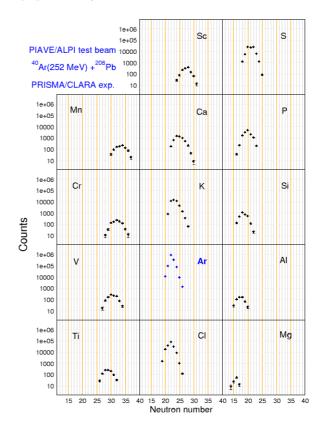


FIG. 2: Mass distributions for several elements.