The °Zr + 2°*Pb multinucleon transfer reaction studied with PRISMA+CLARA
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I. INTRODUCTION

Zr isotopes are very suitable candidates for spectro-
scopic studies of nuclei populated via multinucleon trans-
fer mechanism. °°Zr can be treated as a near closed
shell nucleus with N=50 and Z=40, with a gap sepa-
rating the f-p shell from the g/, proton orbital. Zr nu-
clei have been populated in two-neutron pick-up chan-
nels with (p,t) reactions [1] and in two-proton pick-up
channels with (}4C,!%0) reactions [2]. Work has been re-
cently done on %°Zr via (n,n’') scattering [3], where large
number of final states have been reached. In the present
work we exploited for the first time multinucleon trans-
fer reactions with very heavy ions, namely the reaction
907r+208Ph at an energy close to the Coulomb barrier, to
study the population pattern of excited states in nearly
spherical Zr isotopes via high resolution ~y-particle coin-
cidences [4]. Both projectile and target are well known
closed-shell nuclei and therefore optimum candidates for
having clean experimental and theoretical [5] conditions.
Experiments with closed shell nuclei using *°Ca beams
already showed interesting results both in inclusive [6] as
well as in a very recent ~y-particle coincidence measure-
ment [7].

II. THE EXPERIMENT

The experiment has been performed with the XTU-
Tandem + ALPI booster accelerator complex of the Lab-
oratori Nazionali di Legnaro. In a =~ 48 hours run a
90Zr beam has been delivered at E;,;=560 MeV with
an average intensity of 3 pnA onto a 200 ug/cm? 2°8Ph
target sandwitched between two 20 pg/cm? C-layers.
Projectile-like products have been selected at 8;,,=62°,
an angle close to the grazing one, with the new spectrom-
eter PRISMA [8]. ~y-particle coincidences have been per-
formed coupling the spectrometer to the y-array CLARA
[9]. PRISMA has a solid angle of ~ 80 msr, i.e. =+6°
horizontal and £11° vertical, a momentum acceptance
of £10%, and a mass resolution of 1/300, achieved via
trajectory reconstruction. It consists of a magnetic
quadrupole singlet, placed at 50 cm from the target, and
a magnetic dipole (60° bending angle and 1.2 m curvature
radius). The ion mass is determined from the information
on the (6,¢) entrance angles, (X,Y) exit positions, time-
of-flight (TOF) and total energy. The entrance detec-
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tor is a two-dimensional position sensitive micro-channel
plate (MCP) [10], providing a start signal for TOF with
subnanosecond resolution and X,Y signals with 1 mm res-
olutions. Ions pass through the optical elements of the
spectrometer and after a path of ~ 6.5 m, enter the focal
plane detector [11]. This consists of an array of parallel
plates of multiwire-type (MWPPAC), providing a stop
for TOF and (X,Y) position signals, derived with the
delay line method, with 1 mm resolutions; it is followed
by an array of transverse field multiparametric ionization
chambers (IC), providing AE and total energy signals.
Both the MWPPAC and the IC are segmented into sev-
eral sections, to preserve a high resolution even when
detection rates overcome several kHz. CLARA consists
of 24 Clover detectors from the Euroball collaboration,
placed in a way to form a 27 configuration close to the
target point. PRISMA and CLARA can rotate together
around the target, by means of a thin (1 mm) spherical
Al sliding seal scattering chamber.

III. FIRST RESULTS

In the present experiment, and in agreement with op-
timum Q-values considerations, the strongest observed
channels are the pick-up of neutrons and stripping of
protons. Fig.l shows, as an example, the mass distri-
butions of Zr isotopes after gating on the nuclear charge
7=40. Nuclear charges are obtained by constructing a
AE-E matrix including all events in the IC after proper
calibration of each subanode. The mass resolution turns
out to be ~ 1/220, i.e. consistent with the characteris-
tics of the spectrometer after taking into account target
and detector resolution contributions. Final mass spectra
have been obtained by linearizing the X-TOF matrix for
each section of the MWPPAC and considering the energy
information of the IC which allows solving the indeter-
mination on the atomic charge states. One sees events
corresponding to (dominant) pick-up as well as (weaker)
stripping of neutrons. The bottom (top) part of Fig.1
corresponds to the spectra obtained with (without) v co-
incidences with CLARA. One observes different relative
yields in mass spectra for each isotope, due to the differ-
ent v-multiplicities for the various multinucleon transfer
channels populated in the reaction. The ratio of events in
the two spectra for specific masses is consistent with an
overall efficiency of a few % of CLARA for +y transitions



in the range ~ 2 MeV.

By gating on specific isotopes, we obtain the coincident
« spectra, shown in Fig.2 for the ?°Zr, 92Zr and ®*8Sr iso-
topes, the last one reached via the —2p transfer channel.
The spectra have been obtained after Doppler correction
for the projectile-like nuclei selected by the spectrome-
ter, taking into account position determination at the
entrance of PRISMA, the ion time-of-flight (ions travel
with a v/c ~ 810%) and the geometry of the Clover de-
tectors. The final resolution of v peaks at ~ 1.5 MeV is
~ 1%.
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FIG. 1. Mass spectra for Zr isotopes obtained in the reac-
tion *°Zr+°%°Pb at Flay=560 MeV and at 00 = 62° with
(bottom) and without (top) v coincidences. The spectra have
been obtained after gating on nuclear charge Z=40, derived
from the ionization chamber of the spectrometer

In Fig.2, the strongest lines observed in 9°Zr are the
21 — 0, (E,=2186 keV), 4] — 2{ (E,=891 keV) and
37 — 2 (E,=562 keV). The 2; and 4] levels are built
from the (7799/2)2 configuration, and are located above
the 0F state at 1761 keV, the 3; is associated to the
lowest octupole vibration. We also observe the intra-
band 4= — 5 (E,=421 keV) transition, involving the
(g9 /2™P1/2) configuration, and the interband 67 — 5~
(E,=1130 keV) transition. In the spectrum of **Zr one
sees a clear peak at E,=1874 keV. This corresponds
to the 4+ — 27 transition decaying from the high en-
ergy state at 4058 keV. We also see, clearly, the peaks
at E,=3843 keV and E,=3305 keV, corresponding to
24 — 07, and 2§ — 0f, transitions, respectively.

In ?2Zr, reached via the +2n pick-up channel, one sees
transitions up to 167 — 14% (E,=1401 keV). This con-
firms the ability of these reactions with heavy ions to
populate high spin states via large angular momentum
transfer.

Analysis is in progress to determine the yield distri-
bution of the various multinucleon transfer channels ob-
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served in the experiment and the strength of populated
levels in Zr and Sr isotopes. This should also allow to
study the population of states at about 4 MeV excita-
tion energy where pair vibrational states are expected
[12].
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FIG. 2. ~ spectra for °°Zr (top), "> Zr (middle) and ®®Sr
(bottom) isotopes, obtained after gating on proper mass and
nuclear charge. The spectra are Doppler corrected for projec-
tile-like nuclei taking into account the geometry of the particle
and vy detectors, and the ton velocity. The inset shows the part
of the °° Zr spectrum with v ray energies above 8 MeV.
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